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1 Introduction 
This chapter discusses the control system architecture of the current D0 experiment, how EPICS 

(Experimental Physics and Industrial Control System [1]) was adapted to meet the control and 
monitoring requirements of a large, high-energy physics detector, and how a formal control system 
contributes to the management of detector operations. EPICS, an integrated set of software building 
blocks for implementing a distributed control system, has been adapted to satisfy the slow controls 
needs of the D0 detector (1) by extending the support for new device types and an additional field bus, 
(2) by the addition of a global event reporting system that augments the existing EPICS alarm support, 
and (3) by the addition of a centralized database with supporting tools for defining the configuration of 
the control system.  

2 EPICS and Its Extensions 
Following the first running period for the DØ experiment, which ended in 1995, the computing 

policy of the laboratory decreed that future experiment software must be developed from platform-
independent components. Since the DØ controls and monitoring group was small and the period before 
the beginning of the next running period was short, recasting the existing slow-controls system in the 
new formalism was not practical. 

After a brief survey of the field, the controls group selected EPICS to provide the building blocks 
for our new controls effort. EPICS uses a distributed client-server architecture consisting of host-level 
nodes, called clients, that run application programs and Input/Output Controller (IOC) nodes, called 
servers, that interface directly with the detector hardware. The two classes of nodes are connected by a 
local area network. Clients access process variable (PV) objects on the servers using the EPICS 
channel access protocol. 

The principal reasons for selecting EPICS were (1) the availability of device interfaces that 
matched or were similar to our hardware, (2) the ease with which the system could be extended to 
include our experiment-specific devices, and (3) the existence of a large and enthusiastic user 
community that understood our problems and were willing to offer advice and guidance. 

One of the unique properties of the DØ detector interface is the use of the MIL-STD-1553B serial 
bus for all control and monitoring operations of the detector and of the electronics components located 
in the remote collision hall. Since the detector is inaccessible for extended periods of time, a robust, 
high-reliability communication field bus is essential. We extended EPICS by providing a queuing 
driver for MIL-STD-1553B controllers and a set of device support routines that provided the adaptive 
interface between the driver and the standard EPICS PV support records. Once these elements were in 
place, all of the features of EPICS were available for use with our remote devices. 

High voltage (HV) channel control is an example of extending the basic PV record support [2]. In 
this case, building a compound device from individual PV records was not feasible because of the 
complexity of the HV device and the speed requirements. A generic HV record support module was 
developed based upon the extended Harel state machine model [3]. The record support module 
provides the required, high-level behavior:  (1) linear ramping with parabolic end sections, (2) retries 
for convergence, (3) trip condition recovery, and (4) limits control. Device support modules then adapt 
the HV record to specific hardware devices. Although developed for a specific device, the record 
support is non-device specific and may be used for other types of voltage generators that require a 
similar behavior. 

Using the EPICS portable channel access server, we have constructed a gateway to the SCADA-
based DMACS system that manages the DØ cryogenic and gas utilities. 

3 Global Event Reporting 
EPICS provides tools for handling alarms generated from PVs, including an operator alarm display. 

However, alarms from slow controls are neither the only nor, necessarily, the most important events in 
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the DØ data acquisition system (DAQ). To process events from all DAQ sources, of which slow 
controls is but one, we have developed a separate facility, the Significant Event System (SES) [4], to 
collect and distribute all changes of state of the detector and the data acquisition system. The SES has a 
central server that collects event messages from sender clients and filters them, via a Boolean 
expression, for receiving clients. Sender clients, which include the IOCs, connect to the server via ITC, 
a locally developed, inter-task communication package based upon TCP/IP sockets. All state changes 
on those clients, including alarm transitions, are sent to the server. The client-server model has 
advantages over the EPICS alarm facility, where the operator display explicitly connects to each PV. 
There is no need to construct extensive configuration files for the hundreds of thousands of PVs in the 
slow controls system and the savings in connect time at startup can be significant. 

The alarm class of SES messages receives special handling in the server. The SES server maintains 
the current alarm state of the entire detector so that receiving clients are able to obtain the current state 
when they first connect to the server. In addition to specialized receiving clients that may connect to 
the server, there are three standard clients: the SES logger, the SES alarm display, and the SES alarm 
watcher. The logger has a pass-all filter so that it receives all SES messages sent to the server and 
writes the messages received to a disk file. The current state of the detector stored in the server is 
relayed to users through the alarm display. There is a global configuration for the alarm display and the 
ability to specialize the configuration for the purposes of individual sub-detectors. For alarms that 
compromise data quality the alarm watcher will automatically pause the current run. In addition to its 
monitoring and logging functions, the SES system provides the means for distributing synchronizing 
messages to other components of the online software system. 

Software tools have been developed for mining data from the SES log files. Hardware experts 
review the log files to understand which hardware devices are unstable and collaborators performing 
data analysis can insure the event they are examining is real and not caused by a fault in the detector. 

The SES server and most of the receiving clients have been coded in the Python scripting language, 
while many of the sending clients are coded in C or C++. We anticipate that, for efficiency 
considerations, the server may require recoding in C++ at some later stage in the development cycle. 
API’s for SES clients are available in all three languages. 

4 Centralized Device Database 
The EPICS databases that configure the individual IOCs are flat, ASCII files of record definitions, 

the database equivalent of a PV, that are read by the IOCs during startup. The EPICS system 
additionally provides a higher-level construct, called a template, which is a parameterized collection of 
record definitions. Generator files, which reference the templates, supply the parameter values to 
produce instances of these templated devices. While these collections of files are adequate for EPICS 
initialization, they are not easily accessible to host-level processes that may require the same 
information. 

To address this problem, the DØ experiment centralized the relevant device information in a 
relational database (Oracle) [5] and provided a family of scripts, written in the Python language, to 
manage the transformation between the relational database and the EPICS, ASCII-format files. In 
addition to serving as a repository of the EPICS objects — records, record types, templates and 
generators — the database also stores information about the front-end IOCs: the physical location as 
well as the location and type of the devices that reside on the IOC. The database can also accommodate 
a collection of non-templated EPICS records. At the time that this document was prepared, the database 
contained ~5700 templated devices, corresponding to ~117000 process variables, and that number is 
constantly expanding 

By providing scripts for bi-directional conversions, it is possible to edit collections of devices 
(instances of templated devices) by extracting the parameterized devices to a generator file, modifying 
the generator file with a text editor, and re-inserting the generator file into the relational database. For 
large collections of devices, this three-stage process is often simpler and faster than using a database 
editor directly. 
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In addition to the database management scripts, a WWW browser interface to the relational 
database is available for the initial definition, modification, and viewing of the relational database 
entries. 

With control system device specifications now centralized in the relational database, they are easily 
accessible to other host-level processes. This, in turn, has led to a series of extensions to the original 
database schema to support the needs of other, controls-related processes. 

5 Detector Configuration Management 
One of the most complex tasks performed by the control system is the configuration of the detector 

for specific run conditions. The set of distinct configurations, both for normal, data-taking and for 
calibration runs, is very large; and, so, the usual technique of uploading a specific detector 
configuration, once the required conditions are established, and saving it as a file for subsequent 
downloading is impractical. 

For ease of configuration management, the detector is represented as a tree with nodes at 
successively deeper levels corresponding to smaller, more specialized organizational units of the 
detector. The terminal nodes of the tree are instances of the high-level devices discussed in the 
preceding database section. The intermediate nodes of the tree primarily serve to organize the traversal 
order of the subordinate nodes since the detector is, in general, sensitive to the order in which devices 
are initialized. The terminal nodes, called action nodes, manage the configuration of a specific, high-
level device. 

One level of intermediate node, the geographical sector, has particular significance. These nodes, in 
most cases, represent the individual read-out crates of the data-acquisition system and are the lowest 
level in the tree hierarchy in which the sub-trees are guaranteed to be functionally independent. The 
loading process for these nodes may be executed in parallel, significantly reducing the total time 
required to configure the detector. 

A single server program, COMICS [6], coded in the Python language, manages configuration of the 
EPICS-accessible part of the detector. The tree nodes, both intermediate and action, are all specialized 
instances of a base node class that defines the majority of the methods that characterize node behavior. 
The detector tree structure is defined by a set of configuration files that are Python program segments 
which instantiate instances of these nodes. 

6 Operator Interfaces and Applications 
The experiment selected two programming languages for developing applications and graphical 

operator interfaces (GUIs): C++ and Python. By providing the Python scripting language with an 
interface to the EPICS channel access API (Application Program Interface), members of the DØ 
collaboration have been able to write nearly all of the operator interfaces to the experiment in a high-
level, object-oriented language. The advantages of using Python are: (1) it is fundamentally object 
oriented, (2) it has a number of high-level language constructs, and (3) it has an extensive library that 
provides interfaces to standard UNIX and LINUX utilities. As programs written in scripting languages 
tend to be significantly easier to debug, the development time for building the DØ online system was 
significantly reduced compared with what would have been required had the C++ language been used 
instead. 

GUIs are written with the Python Tkinter interface to the Tk toolkit and with Python Mega 
Widgets, which are extensions to the standard Tkinter widget set. Using these two collections of 
graphics objects, we have developed an application framework to assist in developing operator 
interfaces and to provide a consistent look and feel for all visual displays. This framework includes a 
collection of specialized, graphical objects for constructing updating displays of PV values. 

The experiment uses more than 40 instances of these monitoring displays in the control room to 
manage the detector components. 
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7 Secondary Data Acquisition 
Although originally intended to serve as a short-term replacement for the primary data acquisition 

system (PDAQ) during the commissioning phase of the experiment, the secondary data acquisition 
system (SDAQ) is now used for a variety of run-time tasks that includes the calibration and monitoring 
of detector systems. In place of the dedicated high-speed network used by PDAQ, SDAQ uses a DØ 
product, ITC, to transmit data packets, gathered on an IOC, to host-based processes. The detector-
specific components of a SDAQ application have access to a library of SDAQ functions that handle 
queuing of data messages between components, interrupt management with callbacks, run 
synchronization (start/stop/pause/resume events), and priority-based scheduling. Two of the sub-
detectors, SMT (Silicon Microstrip Tracker) and CFT (Central scintillating Fiber Tracker) use the 
SDAQ system: (1) SMT to monitor the performance of individual silicon detector channels during a 
run, and (2) CFT to calibrate the response of the fiber tracking channels. 

8 Archiving EPICS Data 
While extensively using EPICS records for control and monitoring tasks, almost every detector 

group in DØ needs to keep and have structured access to archived PV values. There are two major 
archiving tools employed by D0: (1) the Channel Archiver [7], for detector group specific needs which 
require rather fast sampling rates, immediate analysis, but does not require frequent access to the old 
historical data; and (2) the EPICS/Oracle Archiver [8], for long-term studies which require slow 
sampling rates, easy access to data at any moment, and minimal maintenance. 

Many different Channel Archivers are running all the time, writing several thousand PV values. 
About once a week collected archives are sent to the central Fermilab robotic tape storage via the SAM 
data management system [9]. The Channel Archiver toolset has many user-friendly interfaces, 
including web-based tools, which allow data retrieval from an archive in different formats to generate 
time plots with various options. 

Specifically developed to store slowly changing data directly in the Oracle database, the EPICS 
Oracle Archiver, written in Python and running as a collection of time-scheduled jobs, stores about 
1500 PVs with sampling rates varying from 1 minute to 1 hour. Several user interfaces exist to provide 
an efficient way to extract and plot archived data. 

 

9 ACNET Gateway 
For operating the D0 detector, it is vital to have a fast and reliable messaging connection between 

D0 and accelerator operations to exchange control and monitoring information. EPICS supplies 
cryogenic and magnet data and forward proton detector pot positions and counter rates. ACNET, in 
turn, sends information about critical accelerator devices. To provide this interchange, we have 
developed a gateway between the EPICS-based DØ control system and the accelerator ACNET control 
system. It is implemented as a multithreaded application in Python, using the XML-RPC server/client 
model, with embedded EPICS channel access and ITC interfaces for D0 clients. 
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